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Origin and Avoidance of Spurious Solutions
in the Transverse Resonance Method

Hervé Aubert, Bernard Souny, and Henri Baudrand, Senior Member, IEEE

Abstract—In the context of transverse resonance method, a
criterion is established for the choice of trial functions introduced
in Galerkin’s method: this criterion allows to avoid the appear-
ance of spurious solutions in the whole region of a propagation
diagram and guarantees, at the same time, a good precision for
the true solutions.

I. INTRODUCTION

OST OF the research dealing with the problem of

spurious solutions has been developed in the context
of finite-element method and many options for avoiding these
nonphysical solutions have been presented in scientific liter-
ature [1]-[4]: the fundamental cause of spurious modes lies
in the inaccurate approximation of the zero eigenvalue and
the corresponding eigenfunctions [5]. The enforcement of the
divergence-free constraint on the trial functions allows to
suppress spurious solutions present in the initial formulation
[2], [6].

Up to now, no scientific communication, at least to our
knowledge, has dealt with the origin and the avoidance of
spurious solutions in the transverse resonance method. This
method, particularly well-adapted to the study of multilay-
cred structures, is used very often to characterize dispersion
phenomena in planar transmission lines [7]-[13]: the size of
matrices resulting from the transverse resonance condition is
reduced considerably compared with the usual finite-element
method. Meanwhile, spurious solutions may be encountered
in the numerical treatment of the transverse resonance method
which are difficult to distinguish from the true propagation
constants and which hinder the systematic investigation of
physical solutions: the origin of these embarassing solutions
is very obscure and therefore their avoidance a priori seems
to be quite difficult.

In this paper, the problem of spurious solutions is studied
in the context of the transverse resonance method. We show
that the characterization of dispersion phenomena in planar
transmission lines gives rise to a resonance condition which
has theoretically a solution for an infinite propagation constant.
This nonphysical solution seems to be the origin of spurious
solutions in the numerical resolution of dispersion problem:
as a matter of fact, we show that the basic cause of spuri-
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ous modes lies in the inaccurate approximation of the field
belonging to this infinite-3 solution.

In order to describe well the fields belonging to the infinite-
B solution, a criterion for the choice of trial functions used
in the Galerkin’s method is rigorously found. In the E-field
formulation, the tangential components of the electric field
in the discontinuity plane are expanded over trial functions:
the key step for the elimination of spurious solutions is the
enforcement of zero curl of the E-field along the axis normal to
the discontinuity plane. A similar criterion can be established
in the H-field formulation, where we have to force the curl
of the magnetic field to zero along the axis normal to the
discontinuity plane.

The numerical applications of our general theoretical study
is divided in two parts. First, in the case of unilateral finline,
we consider the behavior of spurious and physical solutions
with respect to the number of trial functions which do not
satisfy the criterion deduced in the theoretical approach. These
results illustrate the existence of an infinite solution for the
propagation constant: the inaccurate description of the field
belonging to this nonphysical solution generates spurious
solutions.

In the second part of the numerical application, we show
that a appropriate choice of trial functions satisfying the
above mentioned criterion suppresses the spurious solutions
and guarantees, at the same time, a good precision for the
physical solutions.

II. THEORETICAL APPROACH

In order to illustrate the theoretical developments, consider
the general unilateral transmission line of Fig. 1. The metal
on the interface is distributed arbitrarily.

The dielectric substrate of Fig. 1 is assumed to be isotropic
and homogeneous. Losses in the dielectric and in the conduc-
tors as well as the metal thickness are neglected.

A. Transverse Resonance Method

The analysis of planar structures using the transverse reso-
nance method has been the subject of numerous publications
[71-13]. In this study, the application of the method to
the characterization of dispersion phenomena in the planar
transmission line of Fig. 1 will be presented in a brief
development. Note only that the operator formalism is used
to reinforce the systematic character of this method: it is a
concise and clear way to treat the well-known relationships be-
tween the electromagnetic fields, deduced from the equivalent
transmission line of the structure.
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Fig. 1. Cross-sectional view of a unilateral planar transmission line.

discontinuity plane "

Fig. 2. Presentation of current density.

The first point of this method consists in the determination
of the equivalent transmission line of the considered planar
structure in the y -direction [13]. Let E represent the electric
field in the metallized interface (called discontinuity plane,
shown in Fig. 2) and define the current density J in this plane
by the following relation:

—

J=H"x
Thus J=J!+ 9]
with Ji=Hix@" Vie{l}
Then, we can easily establish the equivalent transmission line
of the studied structure shown in Fig. 3.

Note that the electric field E is the fundamental unknown:
we call it the “adjustable source”. We have to solve the two
continuity relation imposed to the electromagnetic fields in

the discontinuity plane, that is:

E=0  on the metal )
J=0  elsewhere (3)

In the E-field formulation, these two equations are expressed
only in terms of the adjustable source E:

-

E=0
YE=0

on the metal -4
elsewhere &)

where Y is the total admittance operator viewed by the dis-
continuity plane (The H-field formulation is discussed later).

In order to satisfy (4), we just expand the electric field F '

on a basis g, which element are zero on the metallic part of
the discontinuity plane.

Next, we determine the matrix representation of the ad-
mittance operator Y on this basis (Galerkin’s method). The
general term of this matrix can be written under the following
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Fig. 3. Transmission line equivalent of planar structure shown Fig. 1.

form:
qu = Z(gp’fEE>YEE(fEEv§Q>
+ (G F MY, TN, 5,
YTE — (YI)TE + (YII)TE
and '

YIM = (V™ 4 (™ Ve ©

and the inner product:
B = [ Fine Foe = b

bmn 18 the delta Kronecker.
Thie analytical expressions of the well-known TMy and TE,
mode admittances Y;! and Y,!! are given below [12]:

Y} = Y, (1) coth (pa(1)b)
Y2 + Ya(e,) tanh (pa(er)be)

YII — Yn .
n =Y Ve tank (ale)be)
with
Y = Yy (1) coth (pn(1)b3),

and mode admittance Y, () :

TE, mode : p,—"(—ef—); TMy mode : JWotr ®)

Jwito Pn(€r)
with
2
p?—,,(er) = (’)’L%) + /62 - kger

and .

kg = 2 Lho€o-
The determinant of (Y) is put equal to zero in order to ensure
the existence of non-trivial solutions for (5): this is in fact,
a resonance condition which allows to calculate the unknown
propagation constant from a variational form.
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B. Existence of an Infinite Solution for
the Propagation Constant3

By applying the transverse resonance method, we demon-
strate the existence of an infinite solution for the dispersion
problem. In other words, we demonstrate the fact that:

(Y)(E) =0
p —o0
The symbol (Y) defines the matrix representation of the

admittance operator on the basis g, and 3 denotes the unknown
propagation constant along the z-axis. We can write:

(B) = 23,
p
and the boundary condition (5):
(VNE)=0=Y Ypzy=0 Vp 9)
g

with Yy, given above by (6). Since
YnTE — 00
B - o0

and

YIM

8= 0o vn (10)

we can find a solution F, for (9) when 3 is infinite: it is
sufficient to take:

(Bwo) = > 25,
P
with

<§p’fEE> =0

that is to say E., expanded over a TM, basis satisfies the
boundary conditions for infinite (.

Thus, we obtain the following result: infinite-3 is a possible
theoretical solution of the dispersion problem. This nonphysi-
cal solution satisfies the fundamental boundary conditions (5)
and is transverse magnetic along y-axis.

In other words, from the Maxwell equation, we can write:

Vn,p

(VX E)-§=—jwpH -7=0

since
H,=0
which leads to
oF, OF, _
oz oz
E
= —joE, = 22

Oz

Therefore, in order to fully described all the solution of the
boundary problem, that is to say the electric field belonging to
the physical propagation constants and the E, field associated

to the infinite-3 solution, we have to choose trial functions
¢ (x) and ¢T(z) so that:

997

@02 @) vm (an
with
(e
S ergr(a) (2

where e’ and e are the components over trial functions @7
and ¢7' respectively.

Comments: 1) In the H-field version of the method, the
current density is taken as the fundamental unknown of the
problem.

From (2) and (3), the new equations to be solved will be
the followings:

ZJ=0

J=0

13)
(14)

on the metal

elsewhere

instead of (4) and (5) considered in the E-field version, in
which 7 is the total impedance operator viewed by the dis-
continuity plane. Thus, we have to solve the system equations:

with

and

S 7 1 #16 -
qu = Z(gp*fEE> YTE (f ZE*gq>
- 1 - .
+ <gP7fEM>YTM <f EM79q>
n

Therefore, we obtain a similar criterion of (11) for the choice
of trial functions ¢ and §7* expanding the current density
in the discontinuity plane: we could easily demonstrate that a
TE, condition must be satisfied in order to fully describe all
the mathematical solutions of (13) and (14). This condition can
be expressed in terms of the current density. In fact, we have:

(ﬁxﬁ)'gzjweﬁ-g’:O

since
E, =0
with
J=Hx i
Therefore:
0Jy B aJ, —0
oz 8z
o
= —jpr. = 2
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so the current density in the discontinuity plane must be
expanded over trial functions 67 and 67° which do satisfy
the following relationship:

o6

67 (z) e (x) Ym

15)

with

D i (@)
- 16)
> it (@)
where 47 and ¢7* are the components over trial functions 67
and 07 respectively.

Note that this result has been used for other reasons by
Jansen in [18] for the characterization of dispersion phenom-
ena in single and coupled microstrip lines.

2) An analogy can be made between our approach and
the one used in the finite-element method: the basic cause
of spurious modes in the latter method lies in the inaccurate
approximation of the zero eigenvalues and the corresponding
eigenfunctions [5]. These spurious modes do not satisfy the
free divergence Maxwell equation. Indeed, the equation to be
solved is:

(VxVxE)—kE=0 (17)
In the case of isotropic and homogeneous media, by taking
the divergence of (17) we obtain:

—

V. (VxVxE)—kV-E=0

which gives

K2V - E =0 (18)
So, (18) yields mathematically a non zero divergence of the
electric field when k, is equal to zero. The divergence of the
eigenfunctions belonging to the zero eigenvalue is not zero.

The key step for the elimination of spurious modes is the
enforcement of the zero divergence of the vector fields used
for the fields description [2]-[6]. This static solution for w = 0
is obviously a uninteresting one, but must be mathematically
well-described, otherwise it takes a finite value and may appear
as spurious solution in the investigation domain of physical
solutions.

In the context of transverse resonance method, we formu-
late an analogous principle: since infinite-3 is a solution of
the boundary equations to be solved, we have to describe
simultaneously the E,, field corresponding to this solution
and the E field belonging to the physical solutions. In other
words, we have to choose correct trial functions which have
to be appropriate for taking into account the characteristics of
the true solutions and the requirement for infinite- 4 solution.
If this choice is not made, that is if the trial functions do
not allow to describe the theoretical F, field, the infinite-
B solution will take a very embarassing finite value in the
numerical treatment (becoming visible as a zero determinant in
the domain of real solutions) and will hinder the investigation
of physical solutions.
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In this manner, in order to avoid the spurious solutions—or
at least, to numerically remove these solutions far away from
the physical ones—it seems judicious to choose trial functions
satisfying the criterion (11) in the E-field formulation or
criterion (15) in the H-field formulation.

Note that the application of the criterion (11) and (15) does
not depend on the structure configuration. As maiter of fact,
the criterion (11) (resp. (15)) is deduced from the zero TM,
mode admittance (resp. zero TE, mode impedance) when (8
is infinite: this property is quite general and, therefore, the
criterion is applicable for all kinds of planar transmission lines.

ITI. NUMERICAL RESULTS AND DISCUSSION

A. Numerical Properties of Detected Spurious Solutions

Let NV, and N, represent the number of trial functions along
the x and z-axis respectively, being inevitably finite numbers
for the numerical requirements. The values of these parameters
are conditioned by the convergence criterion on the solution
for the propagation constant 3.

The analytical expression of trial functions is given in such
a way to ensure a good accuracy of obtained results, to build
a well-conditioned matrix and to calculate easily the matrix
elements [14].

Usually, in order to reduce the matrix size, the edge effects,
that is to say the tendancy of the normal electric field compo-
nent to a metallic edge to become infinite near this edge, are
taken into account by the choice of appropriate trial functions
[15].

Take the example of a unilateral finline: the metallization
thickness is assumed to be zero and allows us to choose the
following usual trial functions for the electric field in the slot:

cos (m — 1)2%(37 - g)

VG (-3
vm € {1,2,3,---, N, }
¢]§($)=Sin(k—1)%r(m_ﬁ)

2
Vk € {1,2,3,--,N.}

¢ (z) =

(19)

where w designates the slot width. Thus, one or two trial
functions are enough to obtain good numerical results for the
propagation constant [16].

But, with these acceptable solutions, we detect another
solution, called (.., which has a surprising behavior versus
the number of trial functions.

As a matter of fact, for a given number of modes, there
exists a number N = N, = N, of trial functions beyond
which this solution takes increasingly larger values (Fig. 4):
The greater is the number N of trial functions, the better are
described all the solutions of the boundary problem, especially
the infinite-3 solution. Thus numerical solution B, is removed
to infinity for a sufficiently large number of trial functions.

The transverse Magnetic nature along the y-axis of the
infinite- 8 solution can be illustrated by the calculation of the
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Fig. 4. The two numerical solutions of the resonance condition versus the
number of trial functions in the case of a unilateral finline: a = 3.556 mm,
by = 3.556 mm, b = 0.254 mm, b3 = 3,302 mm, e, = 2. 22 with a
frequency of 30 GHz.

mode magnitudes of spurious solutions G.,: take a very large
value for solution of the resonance condition det (Y') = 0 and
determine the true solution of this resonance condition. As an
example, in the case of a unilateral finline, with 70 modes
and 11 trial functions, we give the mode magnitude spectrum
for these two kinds of solutions (Fig. 5). It can be noted that
the solution is principally Transverse Magnetic, since the TE,
mode magnitudes are negligeable compared with TM, mode
magnitudes.

B. Avoidance of Spurious Solutions

Applying the criterion (11) with the trial functions along
z-axis mentioned above:

m(z) = cos (m — 1)—%5—(30— g)

JE& (-2

Vm € {1,2.3,---, N}

and

0@ = [ @ - An) s 0)
yields trial functions along z-axis which have not to be
expressed analytically. Actually, the matrix representation
of the admittance operator needs only the determination of
the inner products (¢7*, fu,). since the other inner products
(7%, fnz) can be easily deduced by integration by part:

< I;vfnac> = <aac¢’zca fnx)
= —( Izcaazfnn>a< Izcafnz>

Therefore, we calculated twice less inner products in this case
than in the case of classical trial functions given by (20).

Ay, is introduced in (20) to ensure a zero-component of the
electric field on the fin (boundary condition).

Nevertheless, for information, we give the variation of the
first trial functions along the z-axis in the discontinuity plane
(Fig. 6).

The obtained results with the new kind of trial functions
are very encouraging: the spurious solutions ., detected in

40 [~
o TM modes
¢ TE modes T
]
30 1 oo
3
3
€ 20
&
€
@
€ 10
E [
0+ T I' 9 I : $ I 3 I \

0 10 20 30 40
harmonic order
()
41
34 a TM modes
+ TE modes
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Fig. 5. Mode Magnitudes spectrum. (a) Of spurious solution: 2 = 61.2.10, 01
rad/m. (b) Of physical solution: 3 = 598, 82 rad/m.

the calculation of the propagation constant of the fundamental
mode in a unilateral finline, has disappeared, or at least, is
removed far away from the investigation domain of physical
solutions for 3 (its value is greater than 10® rad/m !).

The cosine trial functions, namely:

¢ (x) = cos (m — 1)%($ - g)

Vm e {1,2,3,---, Ny}
6% (z) = sin (k — 1)%“(35 -2

Vk € {1,2,3,---,N,} Q1)

seem not to generate spurious solutions—moreover note that
they satisfy the criterion (11)—and do not involve complex
calculations. The drawback in the manipulation of this kind of
trial functions is that the solutions of the resonance condition
(zero determinant) do not converge very well with the number
of these trial functions. Since they do not take the edge effects
into account, they involve matrices of relatively large sizes.

The variation of the determinant versus the propagation
constant 3 for the three kinds of trial functions (19), (20), and
(21) (Fig. 7) shows a very similar behavior of the determinant
in the cases of the trial functions (20) and the cosine trial
functions.

Finally, calculate the power density of the true and spurious
solution in the cross section of a unilateral finline (Fig. 8)
(the spurious solution is obtained in the case of trial functions
which do not satisty the criterion (11), that is those of equation

19)).
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Fig. 6. The new trial functions along the z-axis in the case of unilateral finline (see Fig. 4).
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Fig. 7. Determinant versus the unknown 3 for three kinds of trial functions.

We find that the energy of the physical solution is principally
localized between the fins. In contrast, the spurious solution
localizes its energy near the fins and essentially, near the edges.

IV. CONCLUSION

A very promising and simple criterion about the choice of
trial functions in Galerkin’s method has been theoretically
found to suppress spurious modes present in the transverse
resonance method. With a particular choice of trial functions,
this method does not suffer from the appearance of nonphysical
solutions in the numerical resolution of dispersion problem.

VRS0 \\“\ \
i
b ‘!!:::‘:s:‘;o‘\.

(@)

(b)

Fig. 8. Power density in the cross section of a unilateral finline. (a) For
the physical solution (8 = 598,82 rad/m). (b) For the spurious solution
(8 = 61.240,01 rad/m).
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