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Origin and Avoidance of Spurious Solutions

in the Transverse Resonance Method
Herv6 Aubert, Bernard Souny, and Henri Baudrand, Senior Member, IEEE

Abstract— In the context of transverse resonance method, a

criterion is established for the choice of trial functions introduced
in Galerkin’s method: this criterion allows to avoid the appear-

ance of spurious solutions in the whole region of a propagation

diagram and guarantees, at the same time, a good precision for

the true solutions.

I. INTRODUCTION

M OST OF the research dealing with the problem of

spurious solutions has been developed in the context

of finite-element method and many options for avoiding these

nonphysical solutions have been presented in scientific liter-

ature [ 1]–[4]: the fundamental cause of spurious modes lies

in the inaccurate approximation of the zero eigenvalue and

the corresponding eigenfunctions [5]. The enforcement of the

divergence-free constraint on the trial functions allows to

suppress spurious solutions present in the initial formulation

[2], [6].

Up to now, no scientific communication, at least to our

knowledge, has dealt with the origin and the avoidance of

spurious solutions in the transverse resonance method. This

method, particularly well-adapted to the study of multilay-

ered structures, is used very often to characterize dispersion

phenomena in planar transmission lines [7]–[13]: the size of

matrices resulting from the transverse resonance condition is

reduced considerably compared with the usual finite-element

method. Meanwhile, spurious solutions may be encountered

in the numerical treatment of the transverse resonance method

which are difficult to distinguish from the true propagation

constants and which hinder the systematic investigation of

physical solutions: the origin of these embarrassing solutions

is very obscure and therefore their avoidance a priori seems

to be quite difficult.

In this paper, the problem of spurious solutions is studied

in the context of the transverse resonance method. We show

that the characterization of dispersion phenomena in planar

transmission lines gives rise to a resonance condition which
has theoretically a solution for an infinite propagation constant.

This nonphysical solution seems to be the origin of spurious

solutions in the numerical resolution of dispersion problem:

as a matter of fact, we show that the basic cause of spuri-
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ous modes lies in the inaccurate approximation of the field

belonging to this infinite-~ solution.

In order to describe well the fields belonging to the infirtite-

~ solution, a criterion for the choice of trial functions used

in the Galerkin’s method is rigorously found. In the E-field

formulation, the tangential components of the electric field

in the discontinuity plane are expanded over trial functions:

the key step for the elimination of spurious solutions is the

enforcement of zero curl of the E-field along the axis normal to

the discontinuity plane. A similar criterion can be established

in the H-field formulation, where we have to force the curl

of the magnetic field to zero along the axis normal to the

discontinuity plane.

The numerical applications of our general theoretical study

is divided in two parts. First, in the case of unilateral finline,

we consider the behavior of spurious and physical solutions

with respect to the number of trial functions which do not

satisfy the criterion deduced in the theoretical approach, These

results illustrate the existence of an infinite solution for the

propagation constant: the inaccurate description of the field

belonging to this nonphysical solution generates spurious

solutions.

In the second part of the numerical application, we show

that a appropriate choice of trial functions satisfying the

above mentioned criterion suppresses the spurious solutions

and guarantees, at the same time, a good precision for the

physical solutions.

II. THEORETICAL APPROACH

In order to illustrate the theoretical developments, consider

the general unilateral transmission line of Fig. 1. The metal

on the interface is distributed arbitrarily.

The dielectric substrate of Fig. 1 is assumed to be isotropic

and homogeneous. Losses in the dielectric and in the conduc-

tors as well as the metal thickness are neglected.

A. Tr-artsveme Resonance Method

The analysis of planar structures using the transverse reso-

nance method has been the subject of numerous publications

[7]–[ 13]. In this study, the application of the method to

the characterization of dispersion phenomena in the planar

transmission line of Fig. 1 will be presented in a brief

development. Note only that the operator formalism is used

to reinforce the systematic character of this method: it is a

concise and clear way to treat the well-known relationships be-

tween the electromagnetic fields, deduced from the equivalent

transmission line of the structure.
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Fig. 1. Cross-sectional view of a unilateral planar transmission line.
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Fig. 2. Presentation of current density.

The first point of this method consists in the determination

of the equivalent transmission line of the considered planar

structure in the y -direction [13]. Let E represent the electiic

field in the metallized interface (called discontinuity plane,

shown in Fig. 2) and define the current density J in this plane

by the following relation:

Then, we can easily establish the equivalent transmission line

of the studied structure shown in Fig. 3.

Note that the electric field E is the fundamental unknown:

we call it the “adjustable source”. We have to solve the two

continuity relation imposed to the electromagnetic fields in

the discontinuity plane, that is:

E=o on the metal (2)

f=o elsewhere (3)

In the E-field formulation, these two equations are expressed

only in terms of the adjustable source E:

-?3=0 on the metal (4)

YE=O elsewhere (5)

where Y is the total admittance operator viewed by the dis-

continuity plane (The H-field formulation is discussed later).
In order to satisfy (4), we just expand the electric field E

on a basis gP which element are zero on the metallic Pm of

the discontinuity plane.

Next, we determine the matrix representation of the ad-

mittance operator Y on this basis (Galerkin’s method). The

general term of this matrix can be written under the following

b
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Fig. 3. Transmission line equivalent of planar structure shown Fig. 1,

form:

and

YTM = (Yy’J + (Y;I)TM V?zn

and the inner product:

(.im,i) =/a;& “Ldx =dmn
0

I(6)

~mn is the delta Kronecker.
Tlie analytical expressions of the well-known TMY and TEY

mode admittances Y; and Y~I are given below [12]:

Y; = Yn(l) coth(p~(l)bl)

with

Y; = Y~(l) coth(pn(l)bs),

and mode admittance Y~ (cT) :

Pn(G)
TEV mode : —” TMY mode :‘* (8)

jupo ‘ Pn(G.)

with

()
2

p:(e.) = ‘# + B2 – &
cl

and

k: = w2po&o.

The determinant of (Y) is put equal to zero in order to ensure

the existence of non-trivial solutions for (5): this is in fact,

a resonance condition which allows to calculate the urtkrmwn

propagation constant from a variational form.
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B. Existence of an Injinite Solution for to the infinite-/3 solution, we have to choose trial functions

the Propagation Constant/3 #~(x) and q5~(x) so that:

By applying the transverse resonance method, we demon- a~g’
@:(@”#) ~~strate the existence of an infinite solution for the dispersion

(11)

problem. In other words, we demonstrate the fact that:
with

(Y)(i) -+0
/!?+Cx

The symbol (Y) defines the matrix representation of the

(12)

admittance operator on the basis gP and ~ denotes the unknown

propagation constant along the z-axis. We can write:
where e; and e? are the components over trial functions ~~

and ~~ respectively.

(i) = ~ Xpip
Comments: 1) In the H-field version of the method, the

P
current density is taken as the fundamental unknown of the

problem.
and the boundary condition (5): From (2) and (3), the new equations to be solved will be

(y)(i) = o =$’ ~ Y,cpq = o W
the followings:

(9)

q if= o on the metal (13)

with YPq given above by (6). Since J= o else where (14)

YTE + ~
n

instead of (4) and (5) considered in the E-field version, in

~+ec
which Z is the total impedance operator viewed by the dis-

continuity plane. Thus, we have to solve the system equations:

and

we can find

sufficient to

with

(fi)(~)= o+’ ~zp,x, = o ‘@

(lo) q

with
a solution Em for (9) when ,6 is infinite: it is

take: (7)= ~ x,;,

P

and

P

that is to say Em expanded over a TMV basis satisfies the

boundary conditions for infinite /3.

Thus, we obtain the following result: infinite-~ is a possible

theoretical solution of the dispersion problem. This nonphysi-

cal solution satisfies the fundamental boundary conditions (5)

and is transverse magnetic along y-axis.

In other words, from the Maxwell equation, we can write:

(exz). g=-jwpi?. g=o

since

HY=O

which leads to

Therefore, in order to fully described all the solution of the

boundary problem, that is to say the electric field belonging to

the physical propagation constants and the Em field associated

n ‘n

%2”J)+(ii, ?:N1)yT~~

n

Therefore, we obtain a similar criterion of (11) for the choice

of trial functions d: and d~ expanding the current density

in the discontinuity plane: we could easily demonstrate that a

TEV condition must be satisfied in order to fully describe all

the mathematical solutions of ( 13) and ( 14). This condition can

be expressed in terms of the current density. In fact, we have:

(?xll). <=jwc~. g=o

since

with

Therefore:

Eg=O
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so the current density in the discontinuity plane must be

expanded over trial functions tl~ and 19~ which do satisfy

the following relationship:

with

(15)

(16)

where i~ and i? are the components over trial functions t9~

and 19~ respectively.

Note that this result has been used for other reasons by

Jansen in [18] for the characterization of dispersion phenom-

ena in single and coupled microstrip lines.

2) An analogy can be made between our approach and

the one used in the finite-element method: the basic cause

of spurious modes in the latter method lies in the inaccurate

approximation of the zero eigenvalues and the corresponding

eigenfunctions [5]. These spurious modes do not satisfy the

free divergence Maxwell equation. Indeed, the equation to be

solved is:

(?x?xlq-k:z=o (17)

In the case of isotropic and homogeneous media, by taking

the divergence of (17) we obtain:

which gives

So, (18) yields mathematically a non zero divergence of the

electric field when kO is equal to zero. The divergence of the

eigenfunctions belonging to the zero eigenvalue is not zero.

The key step for the elimination of spurious modes is the

enforcement of the zero divergence of the vector fields used

for the fields description [2]–[6]. This static solution for u = O

is obviously a uninteresting one, but must be mathematically

well-described, otherwise it takes a finite value and may appear

as spurious solution in the investigation domain of physical

solutions.

In the context of transverse resonance method, we formu-

late an analogous principle: since infinite-/3 is a solution of

the boundary equations to be solved, we have to describe

simultaneously the Em field corresponding to this solution

and the E field belonging to the physical solutions. In other

words, we have to choose correct trial functions which have

to be appropriate for taking into account the characteristics of

the true solutions and the requirement for infinite- B solution.

If this choice is not made, that is if the trial functions do

not allow to describe the theoretical Em field, the infinite-

~ solution will take a very embarrassing finite value in the

numerical treatment (becoming visible as a zero detertninant in

the domain of real solutions) and will hinder the investigation

of physical solutions.

In this manner, in order to avoid the spurious solutions–-or

at least, to numerically remove these solutions far away frclm

the physical ones—it seems judicious to choose trial functions

satisfying the criterion (11 ) in the E-field formulation or

criterion (15) in the H-field formulation.

Note that the application of the criterion (11) and (15) does

not depend on the structure configuration. As matter of fact,

the criterion (11) (resp. (15)) is deduced from the zero Th4Y

mode admittance (resp. zero TEV mode impedance) when ~

is infinite: this property is quite general and, therefore, the

criterion is applicable for all kinds of planar transmission lines.

III. NUMERICAL RESULTS AND DISCUSSION

A. Numerical Properties of Detected Spurious Solutions

Let Nz and N. represent the number of trial functions along

the x and z-axis respectively, being inevitably finite numbers

for the numerical requirements. The values of these parameters

are conditioned by the convergence criterion on the solution

for the propagation constant /?.

The analytical expression of trial functions is given in such

a way to ensure a good accuracy of obtained results, to build

a well-conditioned matrix and to calculate easily the matrix

elements [14].

Usually, in order to reduce the matrix size, the edge effects,

that is to say the tendancy of the normal electric field compo-

nent to a metallic edge to become infinite near this edge, are

taken into account by the choice of appropriate trial functicms

[15].

Take the example of a unilateral finline: the metallization

thickness is assumed to be zero and allows us to choose the

following usual trial functions for the electric field in the slot:

~j(x) = sin(k-l)~(x - ~)

W%E{1,2,3,... ,N, } ( 19)

where w designates the slot width. Thus, one or two trial

functions are enough to obtain good numerical results for the

propagation constant [16].

But, with these acceptable solutions, we detect another

solution, called pm, which has a surprising behavior versus

the number of trial functions.

As a matter of fact, for a given number of modes, there

exists a number N = N. = N, of trial functions beyond

which this solution takes increasingly larger values (Fig. 4):
The greater is the number N of trial functions, the better are

described all the solutions of the boundary problem, especially

the infinite-~ solution. Thus numerical solution /?m is removed

to infinity for a sufficiently large number of trial functions.

The transverse Magnetic nature along the y-axis of the

infinite- @ solution can be illustrated by the calculation of the
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Fig. 4. The two numerical solutions of the resonance condition versus the

number of trial functions in the case of a unilateral finline: a = 3.556 mm,
bl = 3,556 mm, k = 0.254 mm, bs = 3,302 mm, c, = 2. 22 with a
frequency of 30 GHz.

mode magnitudes of spurious solutions ~m: tike a very large

value for solution of the resonance condition det (Y) = O and

determine the true solution of this resonance condition. As an

example, in the case of a unilateral finline, with 70 modes

and 11 trial functions, we give the mode magnitude spectrum

for these two kinds of solutions (Fig. 5). It can be noted that

the solution is principally Transverse Magnetic, since the TEY

mode magnitudes are negligeable compared with TMY mode

magnitudes.

B. Avoidance of Spurious Solutions

Applying the criterion (11) with the trial functions along

x-axis mentioned above:

~m(z) =cos(m–l)~(r– ;)

z /_

%Z6{1,2,3,.., NZ}

and

rj~(x) = /“((#)~(z)- Am) dr (20)
0

yields trial functions along z-axis which have not to be

expressed analytically. Actually, the matrix representation

of the admittance operator needs only the determination of

the inner products (q$~, fnZ ), since the other inner products

(d:, f~~) CaU be easily deduced by integration by part:

(4:) fnz) = (~zd:l frm)

= -(#g, a. fn.)a(g$:, fn=)

Therefore, we calculated twice less inner products in this case

than in the case of classical trial functions given by (20).

Am is introduced in (20) to ensure a zero-component of the

electric field on the fin (boundary condition).

Nevertheless, for information, we give the variation of the

first trial functions along the z-axis in the discontinuity plane

(Fig. 6).

The obtained results with the new kind of trial functions

are very encouraging: the spurious solutions /?a, detected in

o

4

1~

illu
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harmonic order

(a)

E!l

0 10 20 30 40

harmonic order

(b)

Fig. 5. Mode Magnitudes spectrum. (a) Of spurious solutiorx ~ = 61.2.40,01
rad/m. (b) Of physical solution: i~ = 598,82 rad/m.

the calculation of the propagation constant of the fundamental

mode in a unilateral finline, has disappeared, or at least, is

removed far away from the investigation domain of physical

solutions for ~ (its value is greater than 10s radim !).

The cosine trial functions, namely:

$b:(x) = COs(m -l)+ ;)

b’m~{l,2,3,. ..,lVZ}

VkE{l,2,3,. ..,lV, } (21)

seem not to generate spurious solutions—moreover note that

they satisfy the criterion (11 )—and do not involve complex

calculations. The drawback in the manipulation of this kind of

trial functions is that the solutions of the resonance condition

(zero determinant) do not converge very well with the number
of these trial functions. Since they do not take the edge effects

into account, they involve matrices of relatively large sizes.

The variation of the determinant versus the propagation

constant ~ for the three kinds of trial functions (19), (20), and

(21) (Fig. 7) shows a very similar behavior of the determinant
in the cases of the trial functions (20) and the cosine trial

functions.

Finally, calculate the power density of the true and spurious

solution in the cross section of a unilateral finline (Fig. 8)

(the spurious solution is obtained in the case of trial functions

which do not satisfy the criterion (11), that is those of equation

(19)).
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Fig. 7. Determinant versus the unknown ~ for three kinds of trial functions.

We find that the energy of the physical solution is principally

localized between the fins. In contrast, the spurious solution

localizes its energy near the fins and essentially, near the edges.

IV. CONCLUSION

A very promising and simple criterion about the choice of

trial functions in Galerkin’s method has been theoretically

found to suppress spurious modes present in the transverse

resonance method. With a particular choice of trial functions,

this method does not suffer from the appearance of nonphysical

solutions in the numerical resolution of dispersion problem.

x

.

(a)

(b)

Fig. 8. Power density in the cross section of a unilateral finline. (a) For
the physical solution (~ = 598.82 rad/m). (b) For the spurious solution
(d = 61.240,01 rad/m).
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